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Abstract

We introduce a novel nonparametric methodology for option hedging. Un-

like alternative approaches, our method makes no assumptions about the re-

lationship between option prices and underlying explanatory variables. This

approach relies on accumulated local effects given by ensembles of decision

trees. Although we employ a gradient boosting machine for the ensemble,

any method for creating decision tree ensembles can be considered. By sim-

ulating synthetic option prices generated via the Black-Scholes model, we

observe that our method accurately reproduces the Greeks as predicted by

this model. Then, we conduct an empirical study using American call and

put options on individual stocks. Our findings reveal deviations from the

binomial model when applied to real market prices.
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1 Introduction

The first statistical models for option pricing, such as those by Black and Sc-

holes (1973), Cox and Ross (1976), Cox et al. (1979), and Heston (1993), assume

some data generating processes to derive closed-form analytical solutions for op-

tion prices. However, many of these assumptions are quite stringent and are not

aligned with empirical regularities observed in financial markets. For instance,

the Black-Scholes model provides simple analytical formulas not just for European

option prices but also for their sensitivities with respect to the input parameters.

These sensitivities, commonly referred to as “Greeks”, are used for hedging the risk

associated with holding options in a portfolio. Despite its convenience, the model

has several limitations. In particular, it assumes a log-normal distribution and

constant volatility for the underlying asset returns, both of which are not empiri-

cally observed. Furthermore, it cannot be used for pricing and hedging American

options and other exotic options.

These limitations can be addressed through data-driven approaches, particu-

larly machine learning models, that do not depend on stylized assumptions about

the stochastic processes governing asset price dynamics. Indeed, the use of machine

learning methods has become well-established in the option pricing literature, with

roots in the influential works of Malliaris and Salchenberger (1993) and Hutchin-

son et al. (1994). These methods are good at uncovering complex and nonlinear

relationships, making them valuable tools for pricing options and other derivatives,

even when closed-form pricing equations are available.

Among the diverse machine learning algorithms, the feedforward neural net-

work trained with back-propagation (Rumelhart et al., 1986) emerges as a widely

used model for predicting option prices (e.g., Anders et al., 1998; Garcia and

Gençay, 2000; Andreou et al., 2010). However, alternative machine learning mod-

els, such as support vector machines (Vapnik, 1995)), have demonstrated higher

accuracy compared to neural networks in option pricing (Wang, 2011; Park et al.,

2011). Moreover, Ivaşcu (2011) compares multiple machine learning algorithms

for predicting option prices, showing that tree-based ensembles like random forests

(Breiman, 2001) and gradient boosting machines (Friedman, 2001) outperformed
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neural networks.

Neural networks can also be used to hedge the risk of option positions. Hutchin-

son et al. (1994) and Garcia and Gençay (2000) show that neural networks effec-

tively track the error of a delta-hedged portfolio. To achieve this, they analytically

compute the derivative of the model’s output with respect to the underlying as-

set price. While this approach is technically feasible – albeit cumbersome – for

deep neural networks, it becomes impractical for tree-based machine models that

approximate the pricing function using piece-wise constant functions.

A common misconception in the finance literature is the designation of feedfor-

ward neural networks as nonparametric models. In fact, Hutchinson et al. (1994)

specifically label their neural network models for option pricing as “nonparamet-

ric.” Parametric models are characterized by having a fixed number of parameters

that do not depend on the amount of training data. Feedforward neural networks

are composed by layers containing neurons, and the number of parameters in the

model is determined by the connections between the neurons in each layer. Of

course, there are some architectural decisions to be made, such as deciding on the

number of layers and the number of neurons in each layer. But once these decisions

are made, the number of parameters is fixed. Or, in other words, the functional

form between inputs and outputs is predefined before training. Therefore, feed-

forward neural network are highly parameterized models. Nonparametric models,

on the other hand, do not have a fixed number of parameters and the functional

form between inputs and outputs is not predefined by the analyst, but is instead

defined by the training data. Decision tree-based models like random forests and

gradient boosting machines are examples of nonparametric models because their

complexity and number of parameters depend on the data itself.

In this paper, we propose propose the first fully nonparametric approach for

hedging options. We refrain from making assumptions about the underlying rela-

tionship between option prices and their determinants. In other words, the market

data exclusively dictate how option prices depend on the inputs. First, we use an

ensemble of decision trees to learn the relationship between option prices and ex-

planatory variables. This is a nonparametric model, wherein the functional form
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between option prices and the explanatory variables is not predetermined but en-

tirely dictated by the data. Furthermore, the number of parameters is not fixed.

Second, we need to understand how the pricing function depends on the in-

puts in order to obtain the Greeks. Taking the derivative of the model’s output

with respect to the input variables is unfeasible given the size of the models and

the fact that tree-based models approximate the pricing function using piece-wise

constant functions. Our solution to this problem is based on “accumulated local

effects” (ALE), as introduced by Apley and Zhu (2020). This is a model-agnostic

technique that was originally introduced as a tool for visualizing how the output of

a “black-box” model depends on its inputs. However, we are not interested in the

visualization tool per se but in the actual ALE values provided by the algorithm.

ALE values provide the dependence of the output of a “black-box” model on its

inputs, apart from an unknown constant. Luckily, for this concrete application we

can use finance theory to calibrate the ALE values such that they represent option

prices. Indeed, any reasonable option pricing model must satisfy some constraints.

As the price of the underlying asset approaches zero, the price of a call option

must also approach zero. Similarly, as the time to expiration nears zero, the op-

tion must tend toward the terminal payoff, and so forth. Using this constraints we

are able to calibrate the ALE values. Finally, we obtain approximations for the

option Greeks by computing first and second differences of the ALE values.

We illustrate our method using two datasets. First, we simulated a set of

synthetic option prices generated via the Black-Scholes model. This allowed us to

evaluate our approach in a controlled environment. We found that our method

accurately reproduced the Greeks predicted by this model. Next, we assessed

our approach using a dataset comprising real market prices of American options

on individual stocks. Our findings unveiled significant deviations from the the

binomial model when applied to real market data.

The remainder of the paper is structured as follows: the next section outlines

our approach for hedging options. Following that, Section 3 provides a description

of the datasets. Section 4.1 reports the results obtained for the synthetic Black-

Scholes prices. It will become apparent to the reader that our method effectively

4



reproduces the Black-Scholes model. In Section 4.2, we present the results con-

cerning the real market data, examining the disparities observed in comparison to

the Black-Scholes model. Section 5 provides some concluding remarks.

2 Methodology

Suppose we have trained a model to predict option prices for calls C and puts P ,

considering inputs like the underlying asset price S, strike price K, volatility σ,

time to maturity τ , and interest rate r. Here, X represents a set of regressors,

f(X) represents a trained model, and n denotes the number of training observa-

tions.

2.1 Hedging Method

2.1.1 Accumulated local effects

Accumulated local effects (ALE) plots (Apley and Zhu, 2020) were originally pro-

posed as a visual representation of how a regressor influences the model predictions.

It indicates the type of relationship between the dependent variable and the re-

gressors. For example, if the true relationship is linear, such plot will actually

show a linear dependence. An ALE plot shows how the model output varies as a

function of a regressor, keeping other covariates constant (ceteris paribus effect).

ALE plots are the state-of-the-art approach for visualizing relationships between

a target variable and the regressors. Indeed, as pointed out by Apley and Zhu

(2020), partial dependence plots (Friedman, 2001) and individual conditional ex-

pectation plots (Goldstein et al., 2015) are not appropriate when the regressors

are not independent, which is the case here.

Suppose we want to understand how regressor Xj affects the model’s output.

First, we divide its range using a grid with M bins. Let {Zk}Mk=0 denote the set

of Xj values that define the boundaries of these bins. For instance, the first bin

encompasses all Xj values between Z0 and Z1, while the last bin comprises all

Xj values between ZM−1 and ZM . Typically, the Zk values are selected as the
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(k/M)-quantiles of the empirical distribution of Xj, where Z0 is chosen slightly

below the smallest observation, and ZM equals the largest observation.

Let Ik denote the set of indices corresponding to the observations where Zk−1 <

Xj ≤ Zk. The count of observations in each bin is represented as nk, where

k = 1, . . . ,M . The average local effect of Xj within a specific bin, while holding

all other regressors X\j constant, is given by:

1

nk

∑
i∈Ik

[
f(Zk,X\j,i)− f(Zk−1,X\j,i)

]
. (1)

The sum in Equation 1 loops over all observations in a given bin. For each of

these observations, we obtain the difference between the model predictions with

Xj equal to the upper limit of the bin, Zk, and Xj equal to the lower limit of the

bin, Zk−1. We divide this sum by the number of observations in that bin, nk, to

obtain the average local effect of Xj on the model’s output.

Now, let k(Xj) represents the index of the bin where a specific value of Xj is

located, with k(Xj) = 1 if Xj falls within the first bin, k(Xj) = 2 if it lies within

the second bin, and so on. The “accumulated local effect” at value Xj is simply

the sum of the local effects from the first bin up to the bin where Xj is located:

fA(Xj) =

k(Xj)∑
k=1

1

nk

∑
i∈Ik

[
f(Zk,X\j,i)− f(Zk−1,X\j,i)

]
. (2)

This sum accumulates the local average effects up to a given value of Xj. The plot

of fA(Xj) as a function of Xj provides a visualization of the dependence of the on

Xj across its range. The reader may notice that the values fA(Xj) initiate at zero

and subsequently ascend or descend based on the sign of the average local effects.

That is, fA(Xj) estimates the dependency of the model’s output on Xj apart from

a constant factor.

2.1.2 Calibrating the accumulated local effects

Accumulated local effects estimate the relationship between the target variable and

the covariates apart from an unknown constant. In their original paper, Apley and
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Zhu (2020) suggest subtracting the mean ALE value from the individual values so

that the ALE plot is centered at zero,

fA(Xj)← fA(Xj)−
1

M

M∑
k=1

fA(Xj). (3)

For our objectives, this solution is not adequate as we aim to compare the rela-

tionship between option prices as provided by the model and its respective inputs.

Therefore, to implement our proposed hedging method, we require the calibration

of the ALE values.

Fortunately, concerning option contracts, finance theory guides us regarding

the appropriate vertical positioning of the ALE values. Indeed, any reasonable

option pricing model, must satisfy the following conditions. When the underlying

asset price tends to zero, the call option price must tend to zero as it is written on

an asset without value:

when S → 0, C → 0. (4)

On the other hand, when the underlying asset price tends to infinity, the put

option price must tend to zero since it will not be exercised:

when S → +∞, P → 0. (5)

The two equations above allow us to calibrate ALE values when we examine their

variation with respect to the underlying asset price.

When the time to maturity approaches zero, the call price approaches the

terminal pay-off:

when τ → 0, C → max(S −K, 0), (6)

and likewise for the put price:

when τ → 0, P → max(K − S, 0); (7)

The two equations above allow us to calibrate ALE values when we examine them

as a function of time to maturity.

When the volatility of the underlying asset approaches zero – and the under-

lying asset price does not move – the call price approaches the underlying asset
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price minus the discounted value of the strike price:

when σ → 0, C → max(S −Ke−rτ , 0). (8)

Likewise, for put options we have:

when σ → 0, P → max(Ke−rτ − S, 0) . (9)

These equations allow us to calibrate ALE values when we examine them as a

function of the volatility of the underlying asset.

2.1.3 Calculating Greeks from ALE values

The Greeks are a set of risk metrics that measure the option price’s sensitivity to

shifts in the underlying asset (the Delta and Gamma), asset volatility (the Vega),

and the time-value decay (the Theta). When a parametric model is being used,

they are obtained from the derivatives of the pricing function with respect to its

inputs. Naturally, the accuracy of the Greeks is only as good as the model used

to compute them. In contrast, in our nonparametric approach there is no closed-

form pricing function. What we do have is option prices – given by ALE values

– evaluated at a finite number of input values. Therefore, we approximate the

derivatives by finite differences. Let us assume that we have a long position on a

call option written on a stock. The following relations also hold for put options.

Additionally, if we have a short position on an option, the sign of expressions

should be flipped.

Delta (∆) measures how the call price changes with movements in the price

of the stock. We approximate it using the first difference of the ALE values with

respect to the stock price,

∆ ≡ ∂C

∂S
≈ fA(Sk+1)− fA(Sk)

Sk+1 − Sk
, k = 1, . . . ,M − 1. (10)

Vega (V) measures the risk of changes in implied volatility or the forward-

looking expected volatility of the underlying asset price. We approximate it using

the first difference of the ALE values with respect to the implied volatility,

V ≡ ∂C

∂σ
≈ fA(σk+1)− fA(σk)

σk+1 − σk
, k = 1, . . . ,M − 1. (11)

8



Theta (Θ) measures the rate of change of the option price with respect to the

passage of time t,

Θ ≡ ∂C

∂t
≈ −fA(τk+1)− fA(τk)

τk+1 − τk
, k = 1, . . . ,M − 1. (12)

As time passes, the time to maturity τ decreases and, hence, the minus sign in the

first difference.

The gamma (Γ) of an option measures the rate of change of the option’s delta

with respect to the price of the stock. Therefore, it is the second derivative of the

pricing function with respect to the stock price. We approximate the gamma by

the second differences of the ALE values with respect to the stock price,

Γ ≡ ∂2C

∂S2
≈ fA(Sk+1)− 2fA(Sk) + fA(Sk−1)

(Sk+1 − Sk−1)/2
, k = 2, . . . ,M − 1 . (13)

The differences in (10)–(13), or their put equivalent expressions, give us first or

second order difference values, that can be interpolated to obtain the general shape

of the Greeks.

2.2 Nonparametric predictive model

The nonparametric model we consider is a “gradient boosting machine” (Friedman,

2001). Gradient boosting machines combine multiple base models to form a robust

“committee” of models. Decision trees (Breiman et al., 1983; Quinlan, 1986) are

used as the base models and consist of a series of if-then-else conditions based

on the explanatory variables, which ultimately lead to a prediction. A decision

tree can contain numerous branches, each with multiple sequential tests on the

explanatory variables.

The prediction Ŷ of the gradient boosting machine is obtained by summing

the predictions of a set of B decision trees {fb(X)}Bb=1,

Ŷ =
B∑
b=1

fb(X) , (14)

where the initial tree, f1(X), is a standard decision tree trained on the original

data. Subsequent decision trees, {fb(X)}Bb=2, are incrementally added to the com-

mittee. However, each new tree is trained on the errors produced by the trees
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already present in the committee. This process aims to rectify the errors made

by the existing committee of trees. During each iteration, the tree to be added

is determined by a gradient descent algorithm that minimizes the regularized loss

function,
n∑
i=1

L
(
Yi, Ŷ

(k−1)
i + fb(Xi)

)
+ γT +

1

2
λ||wb||2, (15)

where L(·) is the squared-error loss:

L
(
Yi, Ŷ

(b−1)
i + fb(Xi)

)
=
(
Yi − Ŷ (b−1)

i − fb(Xi)
)2
. (16)

The last two terms in Equation (15) are regularization terms that aim to penalize

complex trees, thereby preventing the committee from overfitting the training data.

The parameter γ serves as a penalty on the number of terminal nodes in a tree,

denoted by T , while λ serves as a penalty on the magnitude of the tree weights.

There are several efficient implementations of gradient boosting. A well-known

implementation is eXtreme Gradient Boosting, also known as XGBoost, which is

the one used here. This is probably the best ‘off-the-shelf’ algorithm for a wide

range of predictive tasks. Indeed, about 60% of the winning solutions posted on

Kaggle during 2015, and the best solutions in the KDD Cup 2015 used XGBoost

(Chen and Guestrin, 2016). We optimized the “hyper-parameters” – parameters

that are not learned in the training process – of our XGBoost model using grid-

search1.

1The grid values were: number of trees in the ensemble ∈ {100, 500, 1000, 1500}; maximum

tree depth ∈ {4, 8, 16, 32}; learning rate ∈ {0.01, 0.025, 0.05, 0.075, 0.1}.
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3 Datasets

We test the proposed hedging method using two distinct datasets: i) a simulated

dataset where option prices are derived from the Black-Scholes equation, and ii)

a dataset comprising real market option prices. Our objective is to show the

method’s performance under both a controlled simulated scenario and with real

market data on options.

3.1 Black-Scholes simulated dataset

The Monte Carlo experiments focused on simulating call options on stocks and

assuming that their prices are determined by the Black-Scholes formula for pricing

European options. We also assumed the underlying asset does not pay dividends.

Since there are no ex-dividend events during the life of the option, it is always

optimal to exercise the option at expiry. In this scenario, the Black-Scholes formula

can also be used to value American call options. Therefore, our simulated data

can be interpreted as data from both European and American call options.

Variable Simulated process

Spot price S ∼ U(500, 1500)

Volatility σ ∼ U(0.1, 1)

Time-to-maturity τ ∼ U(1/252, 2)

Interest rate r ∼ U(0.001, 0.05)

Strike price K ∼ S/z, z ∼ N(1, 0.2)

Table 1: Statistical distributions for generating Black-Scholes prices of non-

dividend paying call options. U(a, b) is the uniform distribution bounded by a

and b, and N(µ, s2) is the normal distribution with mean µ and variance s2.

The option parameters are generated according to the processes outlined in

Table 1. The data generation procedure is the following. A specified number of

sets {S, σ, τ, r} is generated based on the processes described in Table 1. Then,

for each set, four strike prices K are generated using the process specified in the
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last row of Table 1 – that is, the strike prices are constrained to be in the vicinity

of the spot price S.

For each set {S, σ, τ, r,K}, the call prices CBS are calculated using the Black-

Scholes formula. We generated a dataset with 100,000 observations. We make

the assumption that the homogeneity of degree one in the spot and strike prices

of the Black-Scholes formula partially holds, regardless of the true pricing model.

Therefore, both spot and option prices are scaled by the strike price. That is, the

machine learning models are trained to learn the relationship between CBS/K and

the inputs {S/K, σ, τ, r}. After training, the predicted prices can be recovered in

monetary units by multiplying them by the strike price.

3.2 Empirical dataset

The empirical dataset used in this study comprises information on American option

contracts obtained through the Yahoo Finance API2. The dataset includes data

for both call and put contracts. The underlying assets are stocks of four large

companies: Amazon, AMD, Boeing, and Meta. The data collection period for the

option prices spans from November 11, 2020, to February 12, 2021. Each option

price was matched with the closest trading price of the corresponding underlying

stock. None of these companies had dividend events during the options’ lifespan

at the time of data collection. Consequently, for call contracts, the empirical

results can be directly compared to the findings from the simulation exercise.

The volatility of the underlying assets was determined using the implied volatility

obtained from the binomial options pricing model (Cox et al., 1979).

As in the case of the synthetic dataset, for the real market data we also consider

as model outputs C/K or P/K, and as model inputs {S/K, σ, τ, r}. To exclude

highly illiquid contracts, the following criteria were applied. Observations with a

maturity of fewer than 10 trading days until expiry or greater than 1 year were

excluded. Contracts that were deep in-the-money or deep out-of-the-money were

also omitted from the analysis. Finally, we only regarded implied volatilities lower

than 80%. That is, the following restrictions were applied to our dataset: (i)

2https://pypi.org/project/yfinance/
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10/252 < τ < 1 years, (ii) 0.5 < S/K < 1.5 and (iii) 0 < σ < 0.8. Finally, during

our sample period the term structured of interest rates proved to be rather flat,

and given we are only dealing with options with up to one-year maturity, we used

the 3-month Treasury Bill rate from the Federal Reserve Bank of St. Louis as a

measure of the interest rate.

Call options

Company Count Spot price Strike price Option price Maturity Volatility

Amazon 14676 3215 3498 96.7 0.18 0.38

(85) (459) (93) (0.16) (0.09)

AMD 10477 90 100 6.0 0.26 0.54

(4) (19) (6) (0.24) (0.09)

Boeing 9278 212 246 10.9 0.29 0.52

(13) (46) (12) (0.25) (0.10)

Meta 9941 271 304 11.3 0.27 0.41

(9) (51) (13) (0.24) (0.09)

Put options

Company Count Spot price Strike price Option price Maturity Volatility

Amazon 11537 3225 2994 74.5 0.15 0.38

(88) (251) (91) (0.14) (0.08)

AMD 6700 90 84 5.1 0.22 0.53

(4) (12) (7) 0.22 0.09

Boeing 6050 211 192 10.4 0.24 0.53

(13) (28) (13) (0.22) (0.09)

Meta 7692 271 245 9.5 0.25 0.43

(8) (30) (13) (0.23) (0.10)

Table 2: Summary statistics of the dataset: number of observations; mean and

standard deviation (in parenthesis) for the spot price; strike price; option price;

time-to-maturity (years); and annual implied volatility. Prices are in US dollars.

Table 2 presents summary statistics for the calls and puts datasets, including
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the number of observations, mean spot price, mean strike price, mean option

price, mean annual implied volatility, and mean time-to-maturity in years, with the

appropriate standard deviations in parenthesis. All prices are denominated in US

dollars. The number of observations varies across the companies, with Amazon

having the highest number and Meta having the lowest. Our dataset has more

calls than puts, for all underlyings. The mean annual implied volatility ranges

from 0.38 to 0.54 across the companies. The mean time-to-maturity ranges from

0.15 (38 trading days) to 0.29 (73 trading days). For the call options, the mean

spot prices are lower than the mean strike prices, indicating that these options

are typically out-of-the-money. Conversely, for the put options the mean spot

prices are greater than the mean strike prices, indicating that these options are

also typically out-of-the-money.

Figure 1 complements this information presenting the empirical distributions

of the inputs, for each of the underlyings. Full lines refer to data from calls, while

dashed lines refer to data from puts. We observe a slight left skewness in the

distribution of implied volatilities for Amazon, Boeing, and Meta, while there is

no evident skewness in the case of AMD. When comparing call to put implied

volatilities AMD puts present more concentrated volatilities than call, while the

opposite happens in the Meta case. For Amazon and Boeing implied volatilities

from calls and puts behave virtually the same. Concerning the time to maturity

distributions, most traded options have a maturity of less than 3 months regardless

of the company. Regrading moneyness, we observe almost “mirror” distributions

for call and puts around the at-the-money region (S/K ≈ 1). In both cases, there

is a skew towards the out-of the money region. Amazon displays option contracts

with more concentrated moneyness values compared to other companies.
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Figure 1: Distribution of inputs in the empirical dataset: (a) implied volatility σ, (b) maturity τ , (c) moneyness

S/K. Full black lines refer to call options, dashed black lines refer to put options.
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Figure 2: Simulation results. Left images: call price as a function of the spot price,

volatility and time-to-maturity. The solid black line represents the dependence

given by the nonparametric model; the dashed gray line gives the dependence

given by the Black-Scholes model. Right images: Difference between Black-Scholes

model and the nonparametric model.
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4 Results

4.1 Simulation Results

Figure 2 shows the dependence of call prices in terms of spot price, volatility

and maturity. On the left-hand-side images we compare the theoretical values

given by the Black-Scholes model (drashed grey lines) with those obtained by

the nonparametric model (solid black line). On the right-hand-side we plot the

corresponding residuals. We observe that our approach perfectly replicates the

prices generated by the Black-Scholes equation. Indeed, the residuals amount to

only a few percent of the price levels.

Figure 3: Simulation results. Greeks as a function of the corresponding input

variable. The black dots represent ALE differences while the red line represents

the smooth nonparametric sensitivity; the dashed gray line gives the dependence

given by the Black-Scholes model.

Figure 3 presents the theoretical Black-Scholes Greeks (dashed grey line), to-
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gether with the nonparametric ALE differences (black dots) and their LOESS

smoother (red line). We can observe an almost perfect alignment between the

Black-Scholes Greeks and the Greeks derived from our nonparametric approach,

except in the case of Gamma. Since Gamma relies on second-order differences, it is

very sensitive to sampling variability in the ALE values and the quantiles used for

their calculation. Nonetheless, the nonparametric Gamma manages to capture the

correct overall pattern of the theoretical Black-Scholes Gamma. This issue could

be mitigated by assigning lower weight to out-of-the-money options, as their first

differences with respect to the underlying asset price exhibit greater variability, as

evident in the plot for the Delta.

The results above, under a totally controlled environment, are highly encourag-

ing for our method. In the subsequent section, we evaluate its performance using

real market data.

4.2 Empirical Results

Real market option prices are known to deviate from the Black-Scholes model. In

particular, there is no constant volatility across different options contrasts written

on the same asset. In this section, we present the results obtained for a set of

American calls and puts on four individual stocks: Amazon, AMD, Boeing and

Meta. Because these options may be exercised before maturity we use the binomial

model as benchmark. Also, recall that the volatility parameter used for each option

corresponds to the binomial implied volatility. Despite this, unlike the simulation

experiment – where the Black-Scholes prices were the “true” prices – in this section

the binomial model prices do not represent the “true” prices. So we compare

nonparametric prices and Greeks given by our method with prices and Greeks

given by the binomial model, without knowing the ground truth. To the extent

that our approach is fully data driven, it is more likely to capture the “empirical

truth”. Indeed, as shown below, we can explain some of the discrepancies between

our approach and the binomial model by examining the distribution of returns for

the stocks under analysis and comparing them to equivalent Gaussian returns.

In Figure 4, the black solid lines show the empirical return distributions of the
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Figure 4: Distributions of daily stock returns during the period covered by the

data. Black solid lines represents the empirical return distributions. Gray dashed

lines illustrate the Gaussian return distributions (with means and standard devi-

ations equal to the respective sample values).

four stocks under analysis. The gray dashed lines illustrate the Gaussian return

distributions with means and standard deviations equal to the respective sample

values. It is clear from Figure 4 that the empirical return distributions of the four

stocks diverge from the Gaussian distribution assumed by both the binomial and

Black-Scholes models. Although, the skewness and kurtosis differ across stock,

there seems to be a slight skew to the right in the returns of Amazon, AMD and

Meta, while Boeing presents left skewness. Despite this, all stocks present heavier

right tails. Even though skewness and kurtosis differ across stock returns, Amazon,

AMD, and Meta returns have a slight right skew, while Boeing’s returns exhibit

left skewness. Nevertheless, all stocks have heavier right tails.
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Figure 5: American call and put prices as a function of the spot price. The solid

black line represents the dependence given by the machine learning model; the

dashed gray line gives the dependence given by the binomial model.
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4.2.1 Results for options prices

Figures 5 to 7 present eight plots each. In these figures, the top four plots display

the results for call options (one for each company), while the bottom four plots

depict results for put options (also one for each company). The black solid lines

present results given by our nonparametric method, while the gray dashed lines

depict results for the binomial models. Figure 5 indicates that for Meta and

Boeing, the nonparametric call prices tend to be slightly lower than those of the

binomial model for higher stock price values. The nonparametric method also

suggests lower prices for put options written on Boeing stock. Overall, there are

no substantial discrepancies between the two pricing methods.

Figure 6 illustrates how call and put prices change as a function of the volatil-

ity. In this case, we observe substantial discrepancies between our nonparametric

method and the binomial model. Two consistent effects are observed across both

call and put options for all four underlying stocks. The first effect is that non-

parametric prices rise with volatility but consistently remain below those provided

by the binomial model. While “empirical volatility” is hard to quantify, empirical

returns are more likely to cluster around the center of their distribution than nor-

mally distributed returns with the same variance, as shown in Figure 4. Therefore,

our speculation is that the market does not price correctly the fat tails or the likeli-

hood of extreme returns. The second effect is that an S-shaped pattern emerges in

the way our nonparametric method models how market prices change with volatil-

ity. That is, the variation in option prices with volatility is less pronounced for

“uncommon” volatility values. This S-shaped pattern might be explained by the

saying that “stock markets go up by escalator and go down by elevator.” In other

words, higher volatilities often coincide with lower stock prices, implying that high

volatility call options might not hold as much value. Similarly, this holds true for

puts, albeit for a different reason. When stock prices are low, put options become

deep in-the-money. However, facing, on average, higher volatility implies increased

chances of ending out-of-the-money, thereby reducing the value of put options as

well.

Figure 7 illustrates how call and put prices depend on time-to-maturity. Here,
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Figure 6: American call and put prices as a function of the volatility. The solid

black line represents the dependence given by the nonparametric method; the

dashed gray line gives the dependence given by the binomial model.
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Figure 7: American call and put prices as a function of the time-to-maturity. The

solid black line represents the dependence given by the nonparametric method;

the dashed gray line gives the dependence given by the binomial model.
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we notice that the shape of this dependency is consistent across both models. With

the exception of call options written on AMD and Boeing stocks and put options

for AMD stocks, where there’s almost a perfect match, the nonparametric method

indicates slightly lower prices for options across all maturities.

4.2.2 Results for options Greeks

Next, we analyze the results for the option Greeks, derived from the first and

second differences of the options prices. Again, the figures present eight plots each

– the top four plots display the results for call options (one for each company), while

the bottom four plots depict results for put options (also one for each company).

The black dots present results given by our nonparametric method, while the gray

dashed lines depict results for the binomial models. The red line represents the

smoothed nonparametric Greeks obtained via a LOESS regression.

Figure 8 shows how the Delta depends on the underlying asset price. For call

options the nonparametric Delta has a more pronounced S-shaped pattern than

the Delta given by the binomial model. This is attributed to the lower Delta values

around the at-the-money region, rather than substantial deviations for the in-the-

money or out-of-the-money options. On the other hand, regarding put options,

there is substantial agreement between the two pricing methods. The observed

differences to the binomial model can be explained by referencing the empirical

distribution of returns in Figure 4, alongside the statistics of our options sample

in Figure 1. Figure 4 shows that the empirical returns around or slightly above

the mean are more common than what a Gaussian distribution would suggest, ir-

respective of the stock. This accounts for the more pronounced S-shaped patterns

observed for delta. The disparities between the nonparametric and the binomial

Deltas are particularly noticeable for calls. This is because our calls sample is

moderately biased toward out-of-the-money options, with higher S values. Con-

versely, for put options, our sample is biased toward lower values of S, as depicted

in Figure 1 (c). Finally, there is greater variability in the individual Delta values

for option written on Meta and Boeing stocks. This may be attributed to the dis-

persion of the sample moneyness. In-the-money options are relatively less traded,
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Figure 8: Delta for American calls and puts as a function of the spot price. The

black dots represent ALE differences while the red line represents the smoothed

nonparametric sensitivity. The dashed gray line gives the dependence given by the

binomial model.
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resulting in fewer instances of high S values for calls or low S values for puts.

This is a result of the sample dispersion in terms of moneyness. ITM options are

relatively less traded which imply less occurrences of high S values for calls or low

S values for puts.

In Figure 9 we show how the Vega depends on the volatility of the underlying

asset. Unlike the Vega provided by the binomial model, which increases monoton-

ically, the Vega derived from our nonparametric method displays a hump-shaped

pattern for all stocks, both for calls and puts. The hump-shaped pattern of the

nonparametric Vega is somewhat expected, given the S-shaped pattern in Figure

6. Of course, the hump-shaped pattern observed in the nonparametric Vega aligns

with the S-shaped pattern in Figure 6.

Figure 10 shows how the Theta depends on time-to-maturity. The nonpara-

metric and binomial Theta values are relatively close to each other for nearly all

stocks, including both calls and puts. The exception lies in calls written on AMD

stocks, where the nonparametric Theta values are lower compared to the bino-

mial Theta values. However, there is a degree of convergence as time-to-maturity

increases. The increased dispersion in individual Theta values for short-maturity

options might be attributed to “pin risk” (Golez and Jackwerth, 2012). This refers

to the difficulty in pricing or hedging options that are near expiration, especially

those that are at-the-money.

Finally, Figure 11 shows how the Gamma depends on the underlying asset

price. Again, we note that since Gamma relies on second-order differences, it is

more sensitive to sampling variability in the ALE values and the quantiles used

for their calculation. Despite this, the LOESS smoother generates plausible re-

sults considering the limited observations in our dataset, closely approximating

the Gamma values provided by the binomial model in most cases. It is important

to note that we do not anticipate significant differences between these alternative

pricing models here, as they provide a similar relationship between option prices

and stock prices in Figure 5. Thus, the unexpected behavior of the nonparametric

Gamma for low stock price values might be a statistical artifact resulting from the

low number of in-the-money put options.
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Figure 9: Vega for American calls and puts as a function of the volatility. The

black dots represent ALE differences while the red line represents the smoothed

nonparametric sensitivity. The dashed gray line gives the dependence given by the

binomial model.
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Figure 10: Theta for American calls and puts as a function of the volatility. The

black dots represent ALE differences while the red line represents the smoothed

nonparametric sensitivity. The dashed gray line gives the dependence given by the

binomial model.
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Figure 11: Gamma for American calls and puts as a function of the spot price.

The black dots represent ALE differences while the red line represents the smooth

nonparametric sensitivity. The dashed gray line gives the dependence given by the

binomial model.
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5 Conclusion

Our paper introduces a groundbreaking non-parametric method for option hedg-

ing that extends its application to American options. Our hedging method is

based upon ALE values and contributes to the literature by being the first non-

parametric approach to hedging. Here we take the stand that deep neural-networks

are parametric models once their architecture is defined.

The application of our approach to two distinct datasets provides a compre-

hensive evaluation of its performance. The use of simulated Black-Scholes data

establishes a strong foundation, demonstrating the method’s proficiency under

controlled conditions. Furthermore, the empirical dataset, featuring options from

high-profile stocks such as Amazon, AMD, Meta, and Boeing, serves as a real-

world litmus test, affirming the robustness and adaptability of our non-parametric

approach.

As we use a machine learning XGBoost model to calibrate both datasets, our

results also showcase the effectiveness these type of models in pricing models as

previously suggested by Ivaşcu (2011). The model’s ability to navigate the intri-

cacies of American options, combined with its success in a diverse set of real-world

scenarios, underscores its practical utility for financial practitioners.

In conclusion, our research marks a significant step forward in the realm of

option hedging methodologies and proposes a alternative, vis a vis what seems to

be the default machine learning approach in finance: the deep neural networks.

markets.

However, there are still challenges to overcome, such as the need for large

amounts of data and the potential for overfitting. Further research is needed to

address these challenges and explore the potential of machine learning algorithms

in pricing and hedging options.
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